
Inwardly rotating spiral wave breakup in oscillatory reaction-diffusion media

Fagen Xie,1 Dongzhu Xie,2 and James N. Weiss3

1Research Department, Kaiser Permanente, 100 S. Los Robles Ave, Pasadena, California 91101, USA
2Department of Physics, Shanghai Normal University, Shanghai 200233, People’s Republic of China
3UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology,

David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
�Received 19 August 2005; revised manuscript received 14 March 2006; published 8 August 2006�

The breakup of inwardly rotating spiral waves has been investigated in an oscillatory reaction-diffusion
system near a Hopf bifurcation point. The breakup first occurred at the region far away from the core area, then
gradually involved the whole medium by increasing the diffusion coefficient ratio between the two components
of the oscillator system. With the approximation of the Complex-Ginzburg-Landau equation �CGLE�, the
criteria for the occurrence of the inwardly rotating spiral wave are examined theoretically. The analysis of the
stability in the corresponding CGLE revealed that the breakup of the inward spiral wave was related to the
Eckhaus instability.
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I. INTRODUCTION

Spiral wave dynamics has been investigated extensively
in a variety of physical, chemical, and biological systems �1�.
Usually, spiral waves in excitable reaction-diffusion systems
rotate outwardly through the medium from the spiral core
area �1�. Recently, an interesting inwardly rotating spiral
wave was observed in the oscillatory Belousov-Zhabotinsky
�BZ� reaction dispersed in water droplets of a water-in-oil
aerosol OT �AOT� microemulsion �BZ-AOT system� �2�.
The propagating direction of a spiral wave is determined by
the sign of the phase velocity in the system, and the spiral
propagates outwardly �inwardly� for positive �negative�
phase velocity �3–6�. The transition between outward spiral
and inward spirals has been investigated theoretically and
numerically in various oscillatory reaction-diffusion systems,
and in the corresponding complex Ginzburg-Landau equa-
tion �CGLE� �5,6�.

The breakup of outwardly rotating spiral waves has been
observed and studied in various systems �1,7–17�. In particu-
lar, spiral wave breakup has been hypothesized to be a
mechanism of cardiac fibrillation—the leading killer in in-
dustrialized countries �16,17�. Phenomenologically, two dif-
ferent kinds of breakup scenarios for outward spiral waves
have been documented in experimental and numerical simu-
lations: spirals in excitable media usually break near the spi-
ral core �7,8�, while spirals in the oscillatory media first be-
come unstable far away from the core �9–15�. The breakup
near the spiral core center is related to a Doppler-induced
meandering instability �7,8�, while the breakup far away
from the core area is caused by the absolute Eckhaus insta-
bility �9–15�. However, to our knowledge, there is no infor-
mation on whether an inwardly rotating spiral wave can
breakup into a turbulencelike state, and, if so, what mecha-
nism is involved. In this paper, we focus our investigations
on this problem using a FitzHugh-Nagumo �FHN�–type os-
cillatory system. In the next section, we present the math-
ematical model and the numerical simulations of inward spi-
ral wave breakup in this system. The theoretical analysis of
the inward spiral waves and breakup due to the Eckhaus

instability under the approximation of CGLE is presented in
Sec. III. The paper ends with the conclusions and discussion
of the results.

II. MATHEMATICAL MODEL AND BREAKUP OF
INWARD ROTATING SPIRAL WAVE

The oscillatory system under investigation consists of the
following reaction-diffusion equations �18�:

�u/�t = �u − u3/3 − v�/� + Du�2u ,

�v/�t = u − �v + � + Dv�2v , �1�

where �, �, and � are the system control parameters. Du and
Dv are the homogenous diffusion coefficients for the activa-
tor �u� and inhibitor �v�, respectively. As ���c= �1−u0

2� /�,
where, u0 is the fixed point at �c, a limit cycle with a fre-
quency �=��/�1−u0

2�−�2 in the local dynamics of Eq. �1�
appears via a supercritical �g��0� Hopf bifurcation. An in-
wardly rotating spiral wave was numerically simulated in a
two-dimensional homogeneous medium with an identical
small value of diffusion coefficient for both u and v near the
Hopf Bifurcation point �4�. The criteria for the occurrence of
the inward rotating spiral waves and the transition between
the outward spiral and inward spirals in the system have
been examined in detail �4–6�. In this paper, we focused our
attention on how inwardly rotating spiral waves, could
breakup into a complex spatiotemporal chaos or turbulentlike
state. It is well-known that new patterns, such as Turing pat-
terns, can emerge in reaction-diffusion systems in which
there is an imbalance between the diffusion coefficients Du
and Dv �19,20�. Therefore, we set �=Dv /Du, and investi-
gated whether an inward spiral wave would break up into
complex spatiotemporal chaos when the diffusion ratio �
was varied. Throughout this paper, we fixed �=1.95,
�=0.5, �=0.0, Du=0.004, and then varied �. With �=0.5
and �=0.0, the Hopf bifurcation occurred at �c=2. Equation
�1� was simulated in a two-dimensional �2D� square sheet
with size L=100.0. No-flux boundary conditions and dis-
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cretization of dx=dy=0.5 and dt=0.01 were used in an ex-
plicit Euler-scheme. Since we studied the instability of a
single inwardly rotating spiral wave, the spiral wave was first
initiated by using the limit cycle obtained from the local
dynamics of Eq. �1� for �=1 rather than random conditions,
which could initiate multiple spirals �4�. The spiral wave was
then initiated with the values of previous final stable spiral
by gradually increasing �.

As the diffusion ratio � increased from one �the balanced
value for u and v�, the dynamical behavior of the inwardly
rotating spiral wave qualitatively changed. For small �, the
inward spiral wave was completely stable everywhere. The
snapshots of u for �=1.0 are shown in Fig. 1�a�. The spiral
wave propagated from the boundary of the medium to the
spiral core center �propagation of stable inwardly rotating
spiral waves can be viewed in the online supplemental in
Ref. �21� �movie stable�inward�spiral.avi��. The correspond-
ing trajectories of the spiral core center and the spiral arm
�far away from the core center� and the variation of the maxi-
mized u measured for each spiral rotating period at y=50.0
through the spiral core center is shown in Figs. 2�a� and 2�b�,
respectively. The inside left-upper inset in Fig. 2�a� shows an
enlargement of the trajectory at the core center �x=50.0,
y=50.0�. The spiral core center was not completely fixed, but
oscillated with a small amplitude. The unique maximized u
value for each x along the x axis demonstrates that the in-
ward spiral wave was completely stable. However, as � in-
creased to a critical value ��3.3, an unstable modulation
developed in regions near the boundary. These oscillations
eventually grew larger enough to cause the spiral arm near
the boundary to break up into complex multiple inward
spirals, while the core center region remained stable
�a movie illustrating the dynamical evolution of the
inward spiral wave can be viewed in Ref. �21�
�partly�inward�spiral�breakup.avi��. Figures 1�b�, 2�c�, and
2�d� show the dynamical behaviors for �=3.5. The stable
part of the inward spiral wave in the core area was sur-
rounded by a complex sea of inward spirals in Fig. 1�b�. The

oscillation amplitudes of the maximized u measured from
each spiral in the breakup region were of the same order
�Fig. 2�d��, and the variation of the maximized u quickly
decayed as the distance approached the stable core region.
This phenomenon of a stable inward spiral waves surrounded
by a turbulent spiral sea could be seen in the nucleation
process, and was also observed for outward spiral waves in
the Bar model �10�. When � was continuously increased, the
breakup gradually invaded the stable region near the core
center, and finally the inward spiral wave broke up in the
whole medium, as shown in Fig. 1�c� for �=4.0 �the corre-
sponding movie of fully developed inward spiral wave
breakup can be viewed in the online supplemental in Ref.
�21� �fully�inward�spiral�breakup.avi��. The irregular trajec-
tory of the center of the medium in Fig. 2�e� was now the
same as in the region near the boundary shown in Fig. 2�f�.
This breakup scenario is similar to the breakup of outwardly
rotating spiral waves observed in numerical simulations in
oscillatory diffusion-reaction systems �9–11�, and experi-
ments in BZ systems �15�, which showed that spiral wave
breakup in these systems was related to the Eckhaus insta-

FIG. 1. Snapshots of u in the FHN model �1� at different times
and �. The black to white gray scale represents the lowest value
�−0.6� to the highest value �0.6�. The arrows indicate the direction
of wave propagation. �a� �=1.0; �b� �=3.5; �c� �=4.0.

FIG. 2. The corresponding trajectories �left column and �f�� for
locations x=50.0, y=50.0, and x=85.0, y=50.0, and the minimum
and maximum of the maximized u measured from each rotating or
oscillating period �right column, except �f�� versus x at y=50.0. The
parameters in �a� and �b�, �c� and �b�, �e� and �f� were the same as
those in 1�a�–1�c�, respectively. The small and large oscillator or
torus in �a� and �c� represents the trajectories at x=50.0, y=50.0 and
x=85.0, y=50.0, respectively. The left-top part in �a� and �c� shows
an enlargement of the small oscillating trajectory in the same figure.
The plots in �e� show the trajectory at the center x=50.0, y=50.0
while the plots in �f� show the trajectory at the boundary location
x=85.0 and y=50.0.
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bility, and, more importantly, the absolute instability.
It is well established that wave propagation emitted from

a Dirichlet or fixed boundary in 1D systems is an approxi-
mate analog of a spiral wave in 2D medium, without the
curvature effects �9–11�. The wave front or spiral arm far
away from the core center could be also considered as an
asymptotic plane wave �9–11�. Thus, for simplicity, we also
simulated the wave dynamics of Eq. �1� in a one-dimensional
cable with the Dirichlet or a fixed left boundary, and a no-
flux right boundary, to explore the instability of the oscillat-
ing modulation of the inward spiral arm far away from the
core center. Neglecting the small oscillation of the dynamics
in the core center as shown in Fig. 2, we fixed u�0�=v�0�
=0 at the left boundary, so this 1D fixed point was similar to
the core center of the 2D inward spiral wave. Space-time
plots at different times and the corresponding variation of
maximum u during each wave period in 1D simulation are
shown in Fig. 3 for two different �s. Although we used the
fixed boundary at the left side, the wave train propagated
from the right side to left side, rather than being triggered
from the fixed left source point. This is consistent with in-
ward propagation of the spiral from the boundary to the core
center in 2D simulations. As shown in Figs. 3�a� and 3�b� for
�=3.0, the wave far away from the fixed boundary first dis-
played unstable modulated perturbation due to convective
instability �9–11�, but this perturbation was gradually ad-
vected to the right side, and finally disappeared. The propa-
gated wave train exhibited an absolute instability upon in-
crease of � at a critical value �c�3.6, which was little larger
than the critical value of 2D inward spiral wave breakup. As
���c, this instability manifested itself to produce the wave
train “breakup” several wavelengths from the left fixed
boundary, as shown in Figs. 3�c� and 3�d� for �=3.7.

III. THE STABILITY ANALYSIS OF INWARD ROTATING
SPIRAL IN CGLE

The dynamics of waves in reaction-diffusion systems near
a supercritical Hopf bifurcation point can be generically de-
scribed by the CGLE �13,14,22�. Since the control parameter
�=1.95 in this paper was in the vicinity of the Hopf bifurca-
tion point ��c=2, 	�=�−�c=0.05
1�, the approximation of
CGLE could be considered to be valid. Using the standard-
ized perturbation method �6,13,14,22�, the following CGLE

�W/�t = W − �1 + i��W�W�2 + �1 + i���2W , �2�

where

� = g�/g� = −� �

1 − �
,

� = d�/d� =� �

1 − �

�Dv − Du�
�Dv + Du�

=� �

1 − �

�� − 1�
�� + 1�

, �3�

can be derived from the original reaction-diffusion system of
Eq. �1� by setting �=0.0. Since we fixed �=0.5, Eq. �3�
became

� = − 1, � = �� − 1�/�� + 1� . �4�

The spiral wave �either outwardly or inwardly� of Eq. �2� in
the CGLE has the following form �6,12–14�:

W = F�r�exp�i�− 
t − m� + ��r��	 . �5�

Here �r ,�� are the polar coordinates, m= ±1 is the topologi-
cal charge of a one-arm spiral, and 
=�+ ��−��Qs

2. F�r�
and ��r� are functions with the following asymptotic behav-
ior:

F�0� = ��0� = 0, lim
r→�

F�r� = �1 − Qs
2, �6�

where Qs= limr→� ���r� is the asymptotic wave number
which is uniquely determined by � and � �12–14,22�. 

and Qs are antisymmetric under the transformation

FIG. 3. Space-time plots �a� and �c� and the minimum and maxi-
mum of the maximized u during each wave propagation period
within 200 000 time intervals �b� and �d� from simulations of Eq.
�1� in 1D cable with left fixed and right zero-flux boundary condi-
tions for different times and �. �a� and �b� �=3.0; �c� and �d�
�=3.7. The initiated disorder in �a� and �b� was finally advected
away, while it manifested in �c� and �d�.
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��→−� ,�→−��, i.e., 
�−� ,−��=−
�� ,�� and
Qs�−� ,−��=−Qs�� ,��.

Analysis of the occurrence of inward spiral wave, Asymp-
totically r→�, the phase velocity vph of Eq. �2� equals to

�� ,�� /Qs�� ,��, where Qs�� ,�� could be calculated nu-
merically in the 2D system �12–14,23� and analytically for
the analog of a spiral in a 1D system �6�. With the parameters
�=−1, and �= ��−1� / ��+1��0 in this paper, we have

�0 �spiral rotating clockwise� and Qs�0, and then
vph�0, so the spiral inwardly rotated in the CGLE. Under
the approximation of CGLE, the phase velocity of spiral in
the original FHN model of Eq. �1� could be simplified as

ṽph�−� / Q̃s
−� /Qs�0, where � was the frequency of
the oscillator near the onset of supercritical Hopf bifurcation
�6�. Therefore, the spiral in the original FHN system of Eq.
�1� also inwardly rotated.

The Eckhaus instability. Equation �2� exhibits the follow-
ing plane wave solutions:

W = F exp�i�Q�r − 
t��	 , �7�

where F=�1−Q2, 
=�+ ��−��Q2, and Q2�1.
To analyze the stability of the plane waves, we applied a

small longitudinal perturbations exp�±ikr� with k �Q to Eq.
�7�, then we obtained �see Refs. �12,13� for more details�

��k� = − k2 − F2

− 2iQ�k ± ��1 + �2�F4 − ��k2 − 2iQk + �F2�2.

�8�

In the long-wavelength limit �k→0�, Eq. �8� can be ex-
panded to the following formula:

��k� = 2i�� − ��Qk − D�k2 + O�k3� , �9�

and

D� = 1 + �� − 2�1 + �2�Q2/�1 − Q2� . �10�

Thus, the criteria of the long-wavelength stability of the
plane waves are D��� ,� ,Q�=0, which are called the Eck-
haus instability. This leads to

Qc =� 1 + ��

3 + �� + 2�2 . �11�

So, all plane or traveling waves with Q�Qc are stable and
vice versa for those with Q�Qc. From Eq. �11�, it is easy to
obtain the result that the uniform oscillator �Q=0� is the last
plane wave to become unstable at the BFN boundary
1+��=0. The critical wave number Qc versus � for �=−1
is shown in Fig. 4 by the dashed line. The area under this
dashed line is the Eckhaus stable.

As Q�Qc, the plane waves became destabilized via an
Eckhaus instability. However, the instability could be con-
vective or absolute �12,13�. For the convective instability,
although the perturbations grow along space, they eventually
convect away over a long time evolution. In contrast, for
absolute instability, perturbations grow everywhere in the
system, and the growing perturbations are not damped with
any long evolution. To test the absolute instability, the fol-
lowing linear evolution of a small localized perturbation

S0�x� around the plane waves in the longitudinal direction
k �Q has to be considered

S�x,t� =
1

2�
�

−�

�

Ŝ0�k�exp�ikx + ��k�t�dk , �12�

where Ŝ0�k� is the Fourier transformation of S0�x�. The inte-
gral of Eq. �12� can be deformed into the complex k plane,
and is dominated by the largest saddle point of ��k� �12,13�.
Therefore, the criteria for the absolute instability are

Re���k0�� = 0, 
 ��

�k



k0

= 0, �13�

where k0 is the largest saddle point. The threshold of Q for
absolute instability determined by Eq. �13� versus � for
�=−1 is shown in Fig. 4 as the solid line. The area above the
black line is absolute unstable, while the area between the
solid and dashed lines is convectively unstable.

The instability of 2D spiral waves and 1D analog of
spiral. Since the above Eckhaus instability analysis is inde-
pendent of the phase velocity, the instability applied can be
applied to either inwardly or outwardly rotating spiral waves.
At the limit r→�, the 1D analog of spiral asymptotically
approaches a plane wave with the following analytical wave
number �6�:

Qs = −
3���,��
2�� − ��

±�9���,��2

4�� − ��2 +
2����,��2 − �

� − �
,

for � − � � 0 and � 0, �14�

where

FIG. 4. The boundaries for the Eckhaus convective instability
�dashed line� and absolute instability �solid line� at the Q-� plane in
the CGLE of Eq. �2� for �=−1. The dashed-dotted line and dotted
line represent the wave number Q��� selected by the 2D inwardly
rotating spiral wave and the 1D analog of a spiral in the CGLE of
Eq. �2� at the limit r→�, respectively. The open circle represents
the theoretical predicted threshold of 2D inward spiral wave
breakup, while the solid circle is the threshold for the 1D analog of
a spiral.
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���,�� =��5 + 9���� + 4� + 3��8�� + ��2 + 9�1 − ���2 + 4��

4�2� + 7� + 9�3�
.

The 1D analog of the spiral selected wave number obtained
by Eq. �14� versus � for �=−1 is shown in Fig. 4 with dotted
lines. Thus, the threshold of instability of the 1D analog of
spiral was approximately �c�0.55, represented by the solid
circle, the intersection point of the solid line, and the dotted
line. Using the relation of Eq. �4�, the analytical threshold of
instability of a 1D analog of spiral in the original FHN model
of Eq. �1� is �c�3.5, which agrees well with the direct 1D
numerical simulation in Fig. 3.

In the limit r→�, the 2D spiral wave of Eq. �7� can also
be asymptotic to the plane wave with Q=Qs, which is
uniquely determined by � and �. However, there is no the-
oretical analytical formula for the wave number selected by
the 2D spiral wave, in general, and it must be computed
numerically, as explored in details in Refs. �13,23�. The 2D
spiral selected wave number obtained from numerical calcu-
lations is shown in Fig. 4 by the dashed-dotted line, which is
validated from the wave number selected by the 1D analog
of spiral. Therefore, the threshold of absolute instability for
2D spiral waves is the intersection of the solid line and the
dashed-dotted line shown in Fig. 4 by the open circle, where
�c�0.64. As ���c, the spiral became unstable via the Eck-
haus absolute instability, and broke up into a complex turbu-
lencelike state. This theoretical predicted threshold was
slightly larger than the critical value �c�0.59 obtained by
the directly numerical simulations in the CGLE of Eq. �2�.
The simulations for stable inward spiral and spiral wave
breakup in the CGLE are shown in Fig. 5. Since the equa-
tions. of �2� and �4� are equivalent to the original reaction-
diffusion system �1� under the CGLE valid approximation,
the inwardly spiral wave in the original FHN model �1� also
became unstable and broke up via the Eckhaus absolute in-

stability. Using Eq. �4�, the predicted threshold of inwardly
spiral wave breakup in the original FHN model of Eq. �1�
should be nearly �c�4.5. However, this critical value was a
little different from the threshold obtained by numerical
simulations in the original FHN model as shown in Fig. 1.
This difference could be due to two factors. First, the spiral
wave breakup occurred at a finite size �only several wave-
lengths from the spiral core area� in our simulations, while
our theoretical analysis was based on the limit r→�. Sec-
ond, although the parameter �=1.95, 	�=0.05 was consid-
ered in the vicinity of the Hopf bifurcation point, the CGLE
approximation �third order� may not be accurate enough to
represent the dynamics of the original system, and higher
order approximation terms need to be considered. Indeed, at
�=1.98 and 	�=0.02, we numerically found that the thresh-
old of breakup in Eq. �1� was �c�4.2, which was closer to
the theoretically predicted value. The simulations for stable
inward spiral wave and spiral wave breakup in Eq. �1� are
also shown in Fig. 6 for the case of �=1.98.

IV. CONCLUSION

We investigated inwardly rotating spiral wave breakup in
an oscillatory medium—the FHN model near the supercriti-
cal bifurcation point. By increasing the diffusion ratio of the
two components of the FHN model, the inwardly rotating
spiral arm first broke into a turbulencelike state far away
from the core center, which then invaded the whole medium.
The same type of wave train breakup was also found in the
1D simulation with one-side fixed or Dirichlet boundary con-
ditions. With the CGLE approximation, we theoretically
analyzed the occurrence of the inwardly rotating spiral.

FIG. 5. The snapshots of Re�W� for the inwardly rotating spiral
wave at different times in the CGLE of Eq. �2� for various � and
�=−1. The black to white gray scale represents the lowest value
�−1.0� to the highest value �1.0�. The arrows indicate the direction
of the wave propagation. �a� �=0.3; �b� �=0.6. The inwardly spiral
wave was stable in �a� while the initiated spiral broke up into a
turbulencelike state in �b�.

FIG. 6. The snapshots of u for the inwardly rotating spiral wave
at different times in the FHN of Eq. �1� for two different � and
�=1.98. The arrows indicate the direction of wave propagation. �a�
�=4.0; �b� �=4.3. The inwardly spiral wave was stable in �a� while
the initiated spiral broke up into multiple spiral waves in �b�.
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Theoretical analysis of the Eckhaus instability in the CGLE
revealed that the breakup of the inwardly rotating spiral
wave was related to the Eckhaus absolute instability. The
theoretical prediction based on the CGLE approximation
agreed reasonably well with the values obtained from nu-
merical simulations in the original oscillatory FHN model
near the Hopf bifurcation point. In our theoretical model, the
inward spiral wave breakup was controlled by the increasing
diffusion ratio of the components in the system. The same
strategy could also be applied to the experiments such as the
oscillatory BZ-AOT system �2� to test our findings. In addi-

tion to the diffusion ratio, the spiral wave breakup could also
be controlled by other parameters, such as the droplet frac-
tions �d and �cr in the oscillatory BZ-AOT system �2�. How-
ever, regardless of which control parameters are manipu-
lated, inward spiral wave breakup requires the onset of the
Eckhaus absolute instability. Thus, our findings, as well as
previous simulation studies �7–11�, suggest that spiral wave
breakup in a generally oscillatory medium is most likely due
to the Eckhaus instability �absolute�, regardless of whether
the direction of the propagation of the spiral wave is inward
or outward.
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